Automatic back-flushing filter
AutoFilt® RF4W
for water applications

1. GENERAL

Product description
- Self-cleaning automatic filter
- Separation of solid particles from low viscosity fluids

Conical filter element technology
- Wedge wire (50 µm – 1000 µm)
- SuperMesh wire mesh, 3-layer, sintered (25 µm, 40 µm, 60 µm)
- Optional SuperFlush non-stick coating

Product advantages
- Ready-to-operate unit
- Compact design with innovative sealing concept and quick-opening
- Fully automatic operation
- No interruption of filtration during back-flushing
- Full filtration performance following back-flushing
- Maximum utilisation of the filter area
- Low operating costs
- Low maintenance costs

Specifications

<table>
<thead>
<tr>
<th>Nominal size:</th>
<th>G 2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{max}:</td>
<td>450 l/min</td>
</tr>
<tr>
<td>P_{max}:</td>
<td>16 bar</td>
</tr>
<tr>
<td>Filtration ratings:</td>
<td>25 – 1000 µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10 / 16</td>
<td>G 2"</td>
<td>G ¾"</td>
<td>45</td>
<td>9</td>
<td>4</td>
<td>1430</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>2140</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>2500</td>
<td>23</td>
</tr>
</tbody>
</table>

Legend
[^1] T_{max} for all AutoFilt® RF4W: 80 °C
[^2] Refers to EPT version
[^3] Back-flush volume with a valve opening time of 1.5 seconds with a pressure difference of 1.5 bar between the filtrate line and the back-flush line

Technical specifications of standard models

<table>
<thead>
<tr>
<th>Size</th>
<th>Pressure range</th>
<th>Connection Inlet</th>
<th>Connection, back-flush line</th>
<th>Weight</th>
<th>Volume</th>
<th>No. of filter elements</th>
<th>Filter area</th>
<th>Back-flush volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10 / 16</td>
<td>G 2"</td>
<td>G ¾"</td>
<td>45</td>
<td>9</td>
<td>4</td>
<td>1430</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>2140</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>2500</td>
<td>23</td>
</tr>
</tbody>
</table>
2. FUNCTION

FILTRATION
- The fluid to be filtered flows through the filter elements of the back-flushing filter, passing from the inside to the outside.
- During this process, the particles deposit on the smooth inside of the filter element surface.
- As the level of contamination increases, the differential pressure between the contaminated and clean side of the filter increases.
- When the differential pressure reaches the pre-set trigger point, back-flushing starts automatically.

TRIGGERING BACK-FLUSHING
- **Automatic**: Back-flushing is triggered automatically when the triggering differential pressure is exceeded.
- **Timer function**: Makes it possible to set a maximum filtration time, independent of differential pressure, between two back-flushing cycles.
- By pressing the **“TEST”** button.

BACK-FLUSHING OF THE FILTER ELEMENTS – EPT ELECTRO-PNEUMATIC CYCLIC CONTROL
- The rotary drive rotates the filter element mounting plate, along with the filter elements, into position so that a contaminated filter element is located above a flushing opening.
- The back-flushing valve is opened.
- The pressure drop between the filtrate side and the back-flush line flushes a small amount of the filtrate back through the contaminated filter element.
- The contamination particles deposited on the inside of the filter elements are loosened and flushed into the back-flush line via the flush opening.
- After the “back-flush time per filter element” has elapsed, the back-flushing valve is closed.
- In this way, all the filter elements are back-flushed, one after the other.
- A back-flushing cycle is complete once all the filter elements have been cleaned.
- The flow of filtrate is not interrupted during back-flushing.

BACK-FLUSHING OF THE FILTER ELEMENTS – EU ELECTRICAL CIRCULATION CONTROL
- The electrically operated back-flushing valve opens.
- The gear motor rotates the filter element mounting plate continuously as it passes underneath the filter elements to be cleaned.
- The pressure drop between the filtrate side and back-flush line flushes a small amount of the filtrate back through the contaminated filter elements.
- The contamination particles deposited on the inside of the filter elements are loosened and flushed into the back-flush line via the filter element mounting plate.
- Once a pre-set time has elapsed, the gear motor stops and the electric back-flushing valve closes automatically.
- A back-flushing cycle is complete once all the filter elements have been cleaned.
- The number of cycles can be preset via the control.
- The flow of filtrate is not interrupted during back-flushing.
3. SPECIAL FEATURES

FILTER ELEMENT TECHNOLOGY

Conical filter elements
Robust wedge wire or SuperMesh filter elements made from stainless steel are used in the HYDAC AutoFilt® RF4W automatic back-flushing filter. The conical shape of the filter elements provides maximum efficiency during filtration and optimum effectiveness during back-flushing.

SuperFlush non-stick coating
For waste water treatment applications, the filter elements can also be given a special non-stick coating (SuperFlush).

Advantages of the SuperFlush coating:
- Unique coating technology
- Available for conical filter elements
- Prevents particle build-up on the filter element surface
- Gel-like particles do not adhere to the filter element surface
- Reduces biofouling
- Increases the service life
- Increases effectiveness

ISOKINETIC FILTRATION AND BACK-FLUSHING
The conical shape and alignment of the filter elements allow uniform flow, resulting in a low pressure drop and effective cleaning of the filter elements.

Advantages:
- Fewer back-flushing cycles
- Lower back-flushing losses

PULSE-AIDED BACK-FLUSHING
In the EPT control type, the filter element to be back-flushed remains in the flushing position for only a few seconds. Rapid opening of the back-flushing valve generates a pressure surge in the filter element openings, providing an additional cleaning effect to the back-flushing process.

SMALL BACK-FLUSH VOLUMES DUE TO CYCLIC CONTROL
In the EPT control type, the back-flushing valve opens and closes during back-flushing of each filter element.
4. FILTER CALCULATION*

CHECKLIST, FILTER CALCULATION

Step 1: Checking the prerequisites
- The determining factor for operating the AutoFilt® RF4W is the presence of a pressure difference of at least 1.5 bar* between the filter outlet and the back-flush line
- This minimum pressure difference is vital for the filter operation
- Application data is determined using filter questionnaires
- The flow velocity of 4 m/s at the filter inlet should not be exceeded
- The maximum permitted operating temperature for all AutoFilt® RF4Ws is 80 °C
- The flow must not drop below the minimum flow rate of 40 l/min

Step 2: Filter sizing
- The initial pressure difference (Δp) when the filter is in a clean condition must not exceed 0.2 bar
- The pressure drop curve applies to filtration ratings of 50 µm to 1000 µm wedge wire and to 25 µm / 40 µm and 60 µm SuperMesh filter elements
- The flow must not drop below the minimum flow rate of 4 m/s at the filter inlet should not be exceeded

Step 3: Calculation tables
The calculation tables form an important decision-making basis for the selection of the AutoFilt® RF4W.

- In particular, the higher contamination load in cooling lubricant emulsion applications requires that the filter be calculated more generously

CALCULATION TABLES
WATER APPLICATIONS

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Filter size / max. flow rate [l/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>450</td>
</tr>
</tbody>
</table>

The flow rate ranges indicated apply to filtration ratings ≥ 100 µm

* Please contact our Head Office if you have any queries regarding the filter calculation
PRESSURE DROP CURVES
The pressure drop curves apply to water and fluids with a similar viscosity

![Pressure Drop Curves](image)

Flow rate [l/min]

0 60 120 180 240 300 360 420

Pressure difference [bar]

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

RF4W size 3

4 elements

6 elements

7 elements

CIRCUIT DIAGRAM

Inlet

Pre-filter

Shut-off valve

Bypass line (optional)

AutoFilt® RF4W

M

Scope of delivery HYDAC

Outlet

Shut-off valve

Shut-off valve

\(\Delta p_{\text{min}} = 1.5 \text{ bar} \)
5. FILTER CONFIGURATION*

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing manufacture</td>
<td>HYDAC standard</td>
<td></td>
</tr>
<tr>
<td>Connection size</td>
<td>• Inlet/outlet: G 2”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Back-flush line: G ¾”</td>
<td></td>
</tr>
<tr>
<td>Housing materials</td>
<td>Stainless steel casting: 1.4571 or similar (group 316)</td>
<td></td>
</tr>
<tr>
<td>Material of filter elements</td>
<td>• Wedge wire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wire mesh – SuperMesh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stainless steel group 316</td>
<td></td>
</tr>
<tr>
<td>Materials of internal parts</td>
<td>Stainless steel group 304</td>
<td>Stainless steel group 316</td>
</tr>
<tr>
<td>Sealing materials</td>
<td>FPM / FKM</td>
<td>Various sealing materials on request, depending on the particular fluid</td>
</tr>
<tr>
<td>Differential pressure monitoring</td>
<td>HDA pressure transmitter, stainless steel</td>
<td>HDA pressure transmitter, duplex</td>
</tr>
<tr>
<td>Documentation</td>
<td>• Assembly and operating instructions</td>
<td>• Certificate of Conformance CoC</td>
</tr>
<tr>
<td></td>
<td>• Electric plan</td>
<td>• Acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and functional test</td>
</tr>
<tr>
<td></td>
<td>• Declaration of Incorporation</td>
<td>• Acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and functional test including material certificates according to EN 10204, 3.1 for the pressure-bearing media-contacting housing part</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Material certificates according to EN 10204, 3.1 for the pressure-bearing media-contacting housing parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Russian device pass card incl. explanation letter for TRCU 032/2013; in addition to Declaration of Conformity for TRCU 010/2011</td>
</tr>
</tbody>
</table>

* Other versions and customer-specific special solutions after consultation with our Head Office.
6. MODEL CODE

MODEL CODE AutoFilt® RF4

| Filter type | RF4WL – left filter inlet – standard
| RF4WR – right filter inlet |
| **Filter size** | 3 = G2” |
| **Pressure ranges** | 2 = 10 bar (only for EU)
| 3 = 16 bar (EPT & EU) |
| **No. of filter elements** | 4 = 4 pcs.
| 6 = 6 pcs. – standard
| 7 = 7 pcs. – only in cases of high contamination loads |
| **Mounting/venting (more than one option can be chosen)** | 0 = without – standard
| 1 = for wall mounting
| 2 = base frame
| 3 = air-bleed ball valve and piping
| 4 = automatic aeration/deaeration (plastic) and piping |

Control type / supply voltage

| Control type | A _ _ = EPT: electro-pneumatic cyclic control
| B _ _ = EU: electrical circulation control – standard |
| **Supply voltage** | D _ _ = supply voltage 230VAC 50Hz/60Hz – standard
| (*= gear motor, pilot valves / RSVE 24VDC)
| _ F _ = supply voltage 115VAC 60Hz
| (*= gear motor, pilot valves / RSVE 24VDC)
| _ L _ = supply voltage 24VDC (only for EPT) |

Design

| 0 = without control, loose cable, cable length 5 metres
| 1 = basic terminal box on filter, actuators & sensors on the terminal strip
| 2 = ACU Basic on filter – standard
| 3 = ACU Basic with 5 metre cable for wall mounting
| 4 = ACU (metal switch box, with 5 metre cable for wall mounting) |

Differential pressure monitoring

| S = HDA 4700 stainless steel V2A group (4-20 mA), 2 pcs. |

Housing material / coating

| E2 = stainless steel casting 1.4581 (group 316) – standard |

Inner parts

| E1 = stainless steel 1.4301, 1.4541 or similar (group 304/321) – standard
| E2 = stainless steel 1.4401, 1.4404, 1.4571 or similar (group 316) |

Back-flush valve

| E1 = stainless steel 1.4301 or similar (group 304) – standard in case of EU filter
| E2 = stainless steel 1.4408 / 1.4401 (group 316) – standard in case of EPT filter |

End documentation (multiple naming possible)

| 0 = standard (assembly & operating instructions, electric plan, Declaration of Incorporation)
| A = Certificate of Conformance CoC + standard
| B = acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and functional test + standard
| C = acceptance test certificate 3.1 according to DIN EN 10204 for design, pressure and functional test + standard
| D = material certificates according to EN 10204, 3.1 for the pressure-bearing media-contacting housing parts + standard
| E = Russian device pass card incl. explanation letter for TRCU 032/2013; in addition to Declaration of Conformity for TRCU 010/2011 + standard |

Modification number

The latest version is always supplied (currently 2)

Filter elements/filtration rating

| S = preceded with an additional “S” for SuperFlush
| KNS = wedge wire 50 µm to 1000 µm
| KND = SuperMesh 25 µm, 40 µm, 60 µm (3-layer) |

Filtration ratings: KNS 50 µm, 100 µm, 150 µm, 200 µm, 250 µm, 300 µm, 500 µm, 1000 µm
Filtration ratings: KND 25 µm, 40 µm, 60 µm
Other filtration ratings available on request

Special number

For special designs (number will be issued after technical clarification at Head Office)
7. DIMENSIONS

RF4WL3-EU

The dimensions indicated have ± 10 mm tolerances. Subject to technical modifications.

NOTE
The information in this brochure relates to the operating conditions and applications described. For applications and/or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.